
471 

Acta Cryst. (1969). A25, 471 

X-ray Diffraction from Double Hexagonal Close-Packed Crystals 
with Deformation Stacking Faults 

BY S. LELE, B. PRASAD AND T. R. ANANTHARAMAN 

Department o.f Metallurgy, Institute o f  Technology, Banaras Hindu University, Varanasi, India 

(Received 23 September 1968) 

The diffraction pattern for a double hexagonal close-packed crystal containing deformation stacking 
faults is derived under the assumption that the crystal is infinite in size with faults covering entire basal 
planes and distributed at random. It is found that such faulting broadens only reflexions with H - K ¢ 0  
mod. 3, L= 0 mod. 4, 1 mod. 4, 2 mod. 4, and 3 mod. 4. The broadening is equal and symmetrical 
without any shift in the position of the peaks. 

Introduction 

A double hexagonal close-packed (d.h.c.p.) crystal can 
be considered as a layer structure produced by the 
regular stacking of its basal planes in the A B A C  . . .  
sequence according to the A , B , C  notation applied to 
face-centred cubic (f.c.c.) and hexagonal close-packed 
(h.c.p.) crystals. The stacking patterns for the normal, 
as well as for the faulted, d.h.c.p, crystals are shown 
in Fig. 1. The deformation fault has been introduced 
respectively at the layers numbered 0 mod. 4, 1 mod. 4, 
2 mod. 4, and 3 mod. 4 in Fig. l(b), (c), (d) and (e). 

We present in this paper the X-ray diffraction effects 
for a d.h.c.p, crystal with deformation faults. Our ap- 
proach is similar to that used in the diffraction theories 
developed recently for deformation and extrinsic fault- 
ing in f.c.c. (Johnson, 1963) and in h.c.p. (Lele, Anan- 
tharaman & Johnson, 1967) crystals. This approach is 
different from the one used by Paterson (1952) and 
Christian (1954) for deformation faulting in f.c.c, and 
h.c.p, crystals respectively. The derivation of the diffrac- 
tion pattern is subject to the following assumptions: 

General calculation of the diffracted intensity 

In terms of hexagonal basis vectors A1,A2,A3, the 
atoms of a (possibly faulted) d.h.c.p, crystal lie at 
positions: 

R m = m l A l + m 2 A 2 + ¼ m 3 A 3 + f  . qm , (1) 

where Rm is the position vector of the ml,m2 atom in 
the m3 layer. The inter-layer spacing is ¼IA3] and the 
offset vector f is given by: 

f=½(A1-A2) • (2) 

Expressing vectors in reciprocal space in terms of the 
vectors BbBE, B 3 and continuous variables hi, h2,h3, the 
diffracted intensity becomes (Warren, 1959): 

o o  

I(h3) = V 2 X ( exp [2~zi(HB1 + KB2 + haB3) • f(qra3 

-- qra'a)]) exp [2rcimh3/4] 
o o  

= ~2 Z ( exp [iOta]) exp [2z~irnh3/4], (3) 

(1) only deformation faults are present; 
(2) the crystal is infinite in size and free of distortions; 
(3) the scattering power is the same for all the close- 

packed planes; 
(4) there is no change in the lattice spacing at the 

faults; 
(5) the faults are distributed at random; 
(6) the faults extend over entire basal planes. 

where ~,2 is a function of hx and h2, which vanishes 
except when hx = H and hz = K and the phase difference 
is given by: 

2n , 2n 
O r e = - ~ - ( H - K ) ( q m s - q m 3 )  = ~ -  ( H - K ) q m .  (4) 

From equations (3) and (4), it is clear that only reflex- 
ions with H - K =  1 mod. 3 or 2 mod. 3 are affected 
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Fig. 1. Stacking sequences for (a) perfect d.h.c.p, crystal, (b) fault after 0 rood. 4 layer, (c) fault after 1 mod. 4 layel, (d) fault 
after 2 mod. 4 layer, and (e) fault after 3 mod. 4 layer. 
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by faulting, while reflexions with H - K =  0 mod. 3 re- 
main unaffected. 

The algebraic signs of phase changes of magnitude 
~a0= (2zl/3) across successive planes for perfect as well 
as faulted crystals are given in Table 1. It may be noted 
that 

4 0 = 0  } 
• -m = - e ra .  (5) 

Diffract ion from a crystal  with deformation faults 

We shall consider the case H - K =  1 rood. 3 only, since 
the case H - K = 2  mod. 3 is equivalent to it. In the 
d.h.c.p, crystal, a pair of alternate layers occupies the 
same position while the other pair of alternate layers 
occupy different positions. We call layers of the first 
pair -41 and A2 type layers and layers of the second 
pair B and C type layers. A layer is of A1 or C type 
if, in the absence of a fault, the phase difference be- 
tween it and the succeeding plane is + ~0, while it is 
of A2 or B type if the phase shift is - (p0. Let the phase 
differences in an m plane sequence starting with planes 
of the type A1, B, A2 and C respectively be Cam1, Cm B, 
cp~2, and gsc. To determine these phase differences, 
let the planes be numbered from 0 to m and let k0, kb 
k~ and k3 respectively be the number of faults occurring 
on planes with numbers of the type 0 mod. 4, 1 rood. 4, 
2 rood. 4, and 3 mod. 4. Reference to Table 1 now 
enables us to write the following expressions for the 
phase differences: 

,41 [ 1 --(--  1) m . ( _  1)(re_l)/2 
(~ )m.kO,k l , k2 ,k3  = -11- ~ 0  2 - -  

+ (k0 + k l -  k2- k3)] , m > 0 ; (6a) 

C 
q~)m,ko,k 1,k 2 ,k  3 - -  - -  ~ 0  

- 1 + 3( - 1)m _ ( _ 1)m/2[1 + ( - 1)m] 

4 

+ (k0-  kl - k2 + k3)] , m >__ 0.  
J 

(6d) 

The probability of getting a phase difference equal 
to that given by any one of the equations (6a) to (6d) 
is just the probability, P(m, ko, k~,k2,k3), of obtaining 
ko, kbk2,k3 faults on planes of the type 0 rood. 4, 
1 mod. 4, 2 mod. 4, 3 mod. 4 respectively in an m plane 
sequence. Since the probability P(ni, kd  of having kt 
faults on ni planes of the type i rood. 4 is independent 
of the probability P(nj, k~) of having j faults on n~ 
planes of the type j mod. 4 ( iCj) ,  we may write: 

P(m, ko, kl, k2, k3) 

= P(no, ko). P(nb k l ) .  P(n2, k2). P(n3,k3), 

where 

(7) 

i n  
n°=nl=n2=n3 = -4 for m = 0  rood. 4 ,  

m - 1  m + 3  
no= n2 = n3 = - 4 , nl = -4 

for m = 1 rood. 4, 

m - 2  m + 2  
n°=n3=  4 - ' n l = n 2 -  4 

for m = 2 rood. 4, 

m - 3  m + l  
n o -  4 ' nl = n 2 = n 3 -  4 

for m = 3 rood. 4. 

(8) 

B 
(~)m,ko,k  l ,k  2 , k  3 - -  .-{- ~oo 

- 1 + 3 ( -  1 ) m - (  - 1)m/2[1 + ( -  1) m] 

4 

+ (ko-  k t -  k2 + k3)] , m > 0 ; 

1 - ( -  ( _  1)(re_x)/2 1) m 
l~Am2ko'kl"k2'k3 = - -  ~O0 2 I 

+ (ko + kl - k 2 -  k3)] , m _> 0 ; 

(6b) 

(6c) 

If ~ is the probability for the occurrence of a defor- 
mation fault in the crystal, then 

( n i )  cxk, " (1--~x)n~-k~ ( i = 0  to 3),  (9) P(ni, k~) = ki 

and hence from equation (7), we obtain: 

P(m, ko, kl, k2, k3) = H ~kt. (1-~)n~-k~. (10) 
i = 0  k~ 

The expectation value ( e x p  [i~m]) can now be 
written down as follows: 

Table 1. Phase changes for perfect and faulted d.h.c.p, crystals (with origin at AI) 

Normal crystal 
Fault at 0 mod. 4 
Fault at 1 mod. 4 
Fault at 2 mod. 4 
Fault at 3 mod. 4 

H - K =  1 mod. 3 H - K = 0  mod. 3 
• .. + - -  + + - -  + + . . .  . . .00000... 
• .. + - - -  + - -  + + . - .  .. .00000... 
. . . . . .  + + - -  + + . . .  ...00000... 
• .. + + -  + + -  - + + . . .  . . .00000... 
• • • + - 4 -  + + - - + + " "  " . . . 0 0 0 0 0 . . .  
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no n I n2  n3 

( exp [ i~m] )=  X X X X ¼P(m, ko, kx,k2,k3) 
k o = 0  k l = 0  k 2 = 0  k3-----0 

x { exp " A1 • B [l~m.ko,kl,k2,k3] + exp [l~)m.ko,kl.k2.k3] 
+ exp " ~'- • c [t~m.ko.kl,k2.k3] + exp [t~C ko.kl,k~.ka]} , (11) 

since the probabilities of the occurrence of any one of 
the four types of layers Aa, B, Az and C being at the 
origin are equal and work out to ¼. Substituting from 
equations (6), (8) and (9) in equation (11) and simpli- 
fying, we obtain 

I(h3) = Nz 1 + ~ 1 - - -  a t- + ( - 1) m/2 
m = l  --4- Q 402 

× ( 1 - + ) + ( - 1 ) m ' (  1+-01 + 4-~:1 ) 

+(-1)3m/z .  ( i - -  4~2 ) ]} { exp [2zdmh3/4] 

+ exp [ -  2rcimh3/4]} . (16) 

Carrying out the summations, we get 

( exp [i~m])=Q m m = 0  mod. 4 & > 0 ,  (12a) 

( exp [ i ~ m ] ) = -  - -  
1 

• 0 m m = l m o d .  4 &  >1 (12b) 
2Q 

1 
( exp [i~m])= ~ - "  O m m = 2  mod. 4 & > 2 ,  (12c) 

1 
( exp [iqSra]) = - - -  

20 
where 

• O m m = 3 m o d .  4 &  > 3 ,  (12d) 

0 = Ic~ exp [+ i~00] +(1 -c01 = ( 1 - 3 e + 3 e 2 )  1/2 . (13) 

1 1) 
/(h3)= ~ -  1 - - -  + 

0 4~z 

1-02  ) 
x 1 "20  cos (rch3/2)-120 -2- 

1 ) 1-Q 2 
+ 1 -  ~ 1-2Q cos [rc(h3-1)/2]+O 2 

1 ) 1 -~  2 
+ 1 + 10 + 740 -2- " 1 -- 2~ Cos [~(h3- 2)/21n u O 2 

_ ~ 2  

+ ( 1 -  4;2-) 1"20  cos [~(h3-3)/2]+Q2]" (17) 

Combining the equations (12a)to (12d), we have 

x 1--4-- ~- + ( - 1 )  m 1 + - - +  
Q 

+ ( -1 )3m/2 (1  - 4;£)],  m>O. (14) 

From equations (5) and (14), we have 

( exp [i~-m])= ( exp [-iCbral) = 

( exp [iq~m])*=( exp [i¢'m]). (15) 

Substituting from equations (14) and (15) in equa- 
tion (3), we obtain for the diffracted intensity 

I- == 
>- 8 
~_7 
~6 
< 6 

,z, ~3 
.02 

So 
u. 0 0"5 u. 

4M.1 A _~ .-.o?f19 

4M* 2 /~-~ ~1 4M- 3 

1 2 3 4 4"5 
h 3 

Fig.2. Diffracted intensity as a function of h3 for two degrees 
of faulting. 

Description of diffraction effects 

The diffraction pattern of a d.h.c.p, crystal containing 
deformation faults thus consists of sharp peaks cor- 
responding to H - K - - - O  rood. 3 and symmetrically 
broadened peaks corresponding to H - K # 0  rood. 3 
centred about L=0 ,  1, 2, and 3 mod. 4. There is no 
shift of peak position for any value of the faulting 
probability. 

The integrated intensities To, Tx, T2 and T3 for re- 
flexions with H - K ¢ O  rood. 3 and L = 0  mod. 4, 
1 mod. 4, 2 mod. 4, and 3 mod. 4 respectively can be 
readily found by taking the relevant term in equation 
(17) and integrating it with respect to h3 within ap- 
propriate limits. The final results are: 

T 0 = ~ z (  1 _ _ 1  + 1 )_ (18a) 
0 

r l =  N2 (1 - - + ) ,  (18b) 

T2=~,2(1 +_QI + + ) ,  (18c) 

T3= ~z (1 - 4 ; i ) .  (18d) 

For ~=0  or 1 (i.e. Q= 1), To, 7"1, T2 and T3 have the 
values ~z/4, 3~2/4, 9~g2/4 and 3~g2/4 respectively, which 
are characteristic of a perfect d.h.c.p, crystal. As 
increases from 0, intensity is transferred from the other 
three reflexJons to the peaks centred at L = 2  mod. 4. 
At c¢=0.5, only the peaks centred at L = 2  mod. 4 
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remain, while those at L =0, 1, and 3 mod. 4 vanish. 
As e increases further, there is reversal of the process 
until at c~= 1-0, the crystal becomes a perfect d.h.c.p. 
crystal again. The per cent values of To, 7'1, T2 and T3, 
and T2/T1 have been given in Table 2 for a few selected 
values of c~. 

Table 2. X-ray diffraction effects of 
deformation.faults in d.h.c.p, crystals 

~ To T1 7"2 7"3 T2/T1 
0"00 0"00 6 19 56 19 3"00 
0"05 0"16 5 18 59 18 3"35 
0"10 0"32 4 16 64 16 4"00 
0"15 0"48 3 15 67 15 4"50 
0"20 0"64 2 13 72 13 5"52 
0"30 0"98 1 8 83 8 10"35 
0"40 1-24 1 7 85 7 12-00 
0"50 1"33 0 0 100 0 oo 

The integral breadths of all the broadened reflexions 
are equal and given by 

1-Q 
fl=4.-1--~ 0 (~_3e, e < l ) .  (19) 

Some values of/3 are given in Table 2. 

The Fourier series expansion of the broadened com- 
ponent of the intensity about h3=L is obtained by 
writing equation (3) in the form 

with 

c ~  

I(h3) = gtz S Am exp [2nim(h3-L)/4] (20) 

Am= exp [2~rimL/4] ( exp [iqgm]) . (21) 

Discussion of results 

The present work has shown that the X-ray diffraction 
effects of random deformation faults in a d.h.c.p, struc- 
ture are very similar to those in an h.c.p, structure. 
For both structures, the broadening of all the reflexions 
with H - K ¢ 0  rood. 3 is symmetrical and equal to 3c~ 
for small values of e without any shifts in the positions 
of the peaks. Also, in both cases, there is a transfer 
of intensity to reflexions centred at L = 2 rood. 4 from 
the remaining reflexions (Fig.2). For f.c.c, structures 
also, deformation faults give rise to symmetric broad- 
ening of reflexions, the integral breadths being again 
equal to 3c~. However, there is no transfer of intensity 
in this case and positions of the peaks are shifted, un- 
like the cases of the h.c.p, and d.h.c.p, crystals. 

0 MOD'4 , 

3 MOD'4 

L 2 MOD'4 

1 MOD'4 

; q 

; D 

0 MOD'4  • 

(a)|NORMALr.CRYSTAL 

0 MOD'4 • 

3 MOD'4 

L 2 MOD'4 

1 MOD'4 

0 MOD'4 ; 

0 M O D ' 3 1 M O D ' 3 2 M O D ' 3  0 M O D ' 3  

H-K 
(b) FAULTED CRYSTAU_((Z=0"I,0.9) 

// 
0 M O D ' 3 1  MOD'3 2MOD '3  0 M O D ' 3  

H-K 

(c) FAULTED~CRYSTAL (0.=0,5) 

Fig. 3. Reciprocal space intensity maps for normal and faulted crystals. 
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A l'e A Ar 
8 

Fig.4. Schematic powder pattern for faulted crystals (ct=0.1, 
0.9). 

a comparison of the ratios of the integrated intensities 
of reftexions with different values of L (Table 2). 

The rare earth metals lanthanum, cerium (below 
-10°C) ,  praseodymium, neodymium and americium 
are known to exhibit the d.h.c.p, structure (Barrett & 
Massalski, 1966) besides many intermetallic com- 
pounds. Interesting results may be expected from X-ray 
diffraction studies of these metals and alloys after de- 
formation. 

The reciprocal lattice and the powder pattern (sche- 
matic) for deformation-faulted d.h.c.p, crystals are 
illustrated in Figs. 3 and 4. The nature of the powder 
pattern suggests a possible method of determining a 
in practice. Consider the pair of reflexions 0004 and 
10]2, the first of which is unaffected by faulting, while 
the second is affected. If we assume that the broadening 
of the two reflexions by all factors other than faulting 
is equal, then the broadening resulting from these other 
factors can be removed from the total broadening of 
the 10]2 reflexion by the method due to Stokes (1948), 
yielding the fault broadening and thus c~. Alternatively, 
c~ can be evaluated, although not so accurately, from 

Two of the authors (S.L. and B.P.) wish to thank 
the University Grants Commission, New Delhi, for 
the award of Research Fellowships. 
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The Effects of n-Beam Dynamical Diffraction on Electron Diffraction Intensities 
from Polyerystalline Materials 
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Calculations based on n-beam dynamical diffraction theory have shown that the intensities of rings 
and arcs in diffraction patterns from polycrystalline materials are strongly dependent on the experi- 
mental conditions. For arc patterns from BiOCI, calculations confirm a revised formula for the inten- 
sities from very thin crystals and indicate dependences on the distributions of orientation, thickness 
and bending of the crystals which are sufficient to account for the wide deviations of recent experimental 
results from the predictions of the primary extinction formula, based on the two-beam approximation. 
Inferences regarding the possible errors in electron diffraction analysis of crystal structures, especially 
for materials containing heavy atoms, are drawn from calculations relating to the intensities of arc 
patterns from AgTISe2. It is suggested that n-beam calculations should be made in order to avoid 
serious error in the refinement stages of a structure analysis. 

Introduction 

The presence of dynamical diffraction effects in the 
intensities of electron diffraction ring patterns from 
polycrystalline materials has been recognized for many 
years through the success of the primary extinction 
formula of Blackman (1939); see, e.g., Kuwabara 
(1957). However, the use of accurate electronic record- 

* Now at The Metallurgy Department, University of Ox- 
ford, Parks Road, Oxford, England. 

ing equipment and of filters to remove inelastically 
scattered electrons has revealed significant discrep- 
ancies between experimental results and the theoretical 
values based on the assumption of two-beam dynamical 
conditions. Thus Horstmann & Meyer (1962) found 
that the 400 and 222 intensities in ring patterns from 
polycrystalline aluminum did not lie on the primary 
extinction curve, and Wedel (1963) reported similar, 
but larger discrepancies in the case of silver. Recently 
Kuwabara, Turner & Cowley (1966) and Kuwabara 
(1967) have shown that intensities in arc patterns from 


